Skip to content

Puzzle: A little properties challenge

August 17, 2007 pm31 6:00 pm

The rules: There are lots of answers. Find one or two interesting ones to share.

Find an operation that is commutative but not associative.

Who gets the credit for this one? I don’t know, I think it’s been around forever. But I use it every year in algebra, cute little challenge.

Before they start, the kiddies have done some work with both properties (and closure. Somehow they get to me with no sense of closure). We look at the four commonest: +,-,*,/, but we’ve also begun to look beyond those when the challenge is posed.

Numbers are commutative and associative under both + and ×, and under neither ÷ nor -. As a result, kids often conflate commutativity and associativity. So we work on making these properties distinct for the kidlets.

The immediate inspiration goes to Rolfe, with finder’s fee to Vlorbik.

6 Comments leave one →
  1. August 17, 2007 pm31 8:44 pm 8:44 pm

    averages. use “infix” notation:
    xAy := (x+y)/2.
    then obviously xAy = yAx
    for all x, y (in a given field
    of characterisic \not= 2, say).

    but, e.g., (4A8)A12= 9
    whereas 4A(8A12) = 7.

    i figured this one out a long time ago
    when i first saw this problem and
    it’s the only one that’s stuck.
    so maybe i should try to think of another.
    umm … lie bracket (mod 2)?

  2. August 17, 2007 pm31 10:47 pm 10:47 pm

    Nice question. I feel very uninquisitive for not thinking about this myself.

    Not-AND (NAND) is one of my favorite Boolean operations, so I’m glad to see it do the job too. It’s pretty clear that is is commutative: (A NAND B) = (NOT (A AND B)) = (NOT (B AND A)) = (B NAND A).

    But associative doesn’t quite work out.

    ((False NAND True) NAND True) = (True NAND True) = False


    (False NAND (True NAND True)) = (False NAND False) = True

    Hmmm… Is NAND really a Lie Bracket mod 2?

  3. August 19, 2007 pm31 8:13 pm 8:13 pm

    For associative but not commutative we show them Left(a,b) = a.
    Average (thanks Vlorbik) is the first example I use of commutative but not associative.
    Clever, Rolfe. I decided to check “if..then” for associativity. I didn’t think so, but it took a moment to find F \rightarrow (x \rightarrow F) \not= (F \rightarrow x) \rightarrow F the couterexample.

  4. August 22, 2007 pm31 6:25 pm 6:25 pm

    here’s another: “absolute difference”.
    define D by aDb := |a-b|.
    obviously D is commutative, but
    1D(2D3) = 1D1 = 0
    (1D2)D3 = 1D3 = 2.

    i came up with this by taking a well-known operation
    (subtraction) that’s *neither* commutative *nor* associative
    and modifying it to force commutativity. this seems likely
    to yield other examples if pushed at all hard. hmmm …
    what about aQb := max {a/b, b/a} ? (…. thinking …)
    yep. it works [ 2Q(3Q4) \not= (2Q3)Q4, e.g.].
    this is fun and easy.

    i worked out an operation on {a,b,c} last night
    (inspired by rolfe’s use of booleans — operations
    on {T,F} — the “minimal counterexample”)
    by fiddling around with tables. the first thing
    i tried, worked (and i quit looking right there).

    aRa = bRb = cRc = a (the main diagonal )
    aRb = bRa = a
    aRc = cRa =c
    bRc = cRb = b.

    then i started trying to find some “real world”
    interpretation of such an operation
    (this is the opposite of mathematical modeling:
    the “to a kid with a hammer, everything looks
    like a nail” phenomenon).
    i even came up with one but it was pretty bogus
    (a is the ruling class, b the bourgois, c the proles …
    R is “whose opinion dominates” in an encounter …
    aR(bRc) = a “because” the yesmen keep the rabble
    away from the boss; (aRb)Rc = c because this function
    of middlemanagement *hasn’t* been effectively exploited.
    that cRc = a is of course a reflection of the need
    for “consciousness raising” … oh, never mind).

  5. August 22, 2007 pm31 8:31 pm 8:31 pm

    I don’t think I’ve ever laughed out loud about a binary relation before. My consciousness has been raised.

  6. August 24, 2007 am31 9:57 am 9:57 am


    Who’s next?

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: